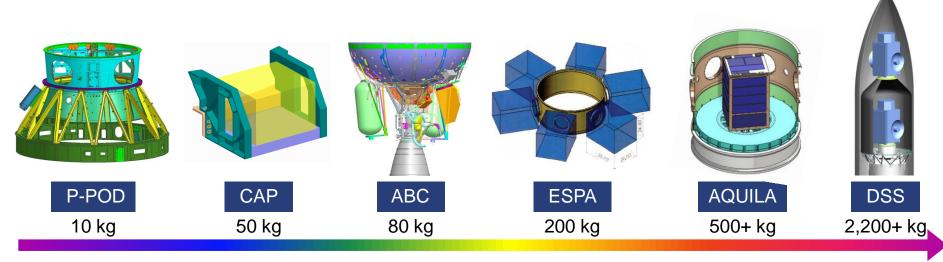


ULA Rideshare Overview

September 2015

Keith Karuntzos Business Development United Launch Alliance



Copyright © 2015 United Launch Alliance, LLC. All Rights Reserved.

Rideshare - A Low-Cost Solution For Space Access

- □ What is Rideshare?
 - The approach of sharing available performance and volume margin with one or more spacecraft that would otherwise go underutilized by the spacecraft community
- Advantages of ULA Rideshare
 - Provides the payload community a cost-effective and reliable method to get capability on-orbit via Atlas and Delta launch vehicles
 - Cost-savings are realized by ridesharing with one or more payloads
 - Allows more funding to be applied to the spacecraft and mission operations

Rideshare Definitions

- Rideshare
 - A general term applicable to a launch service that launches more than one spacecraft or payload to orbit
- Auxiliary Payload (AP or APL)
 - A payload launched to orbit that is not a primary payload
- Hosted / Piggyback Payload
 - An APL launched as part of the spacecraft
- Secondary Payload (SP)
 - An APL launched as part of the launch vehicle
- Co-Manifest
 - General term for two or more primary payloads manifested together
- Multi-Manifest
 - Multiple spacecraft of the same design launched to orbit
 - Does not include multiple spacecraft launched as a single payload stack
- Dual Manifest (DM) or Dual Launch (DL)
 - Two primary payloads (of either a different design or the same design) sharing a launch to orbit using dedicated dual manifest hardware

ULA Rideshare Mission History

MISSION	VEHICLE	LAUNCH DATE	RIDESHARE TYPE	# OF RIDESHARE PAYLOADS	RIDESHARE HARDWARE USED
STP-1 (Orbital Express/ESPA)	Atlas V 401	3/8/2007	Secondary	4	ESPA
LRO/LCROSS	Atlas V 401	6/18/2009	Secondary	1	ESPA
NPP/ELaNa III	Delta II 7920	10/28/2011	Secondary	6	Delta II P-POD
NROL-36/OUTSat	Atlas V 401	9/13/2012	Secondary	11	ABC
NROL-39/GEMSat	Atlas V 501	12/5/2013	Secondary	12	ABC
AFSPC-4/ANGELS	Delta IV M+(4,2)	7/28/2014	Secondary	1	ESPA
SMAP/ELaNa X	Delta II 7320	1/31/2015	Secondary	4	Delta II P-POD
AFSPC-5/ULTRASat	Atlas V 501	5/20/2015	Secondary	10	ABC
				49	

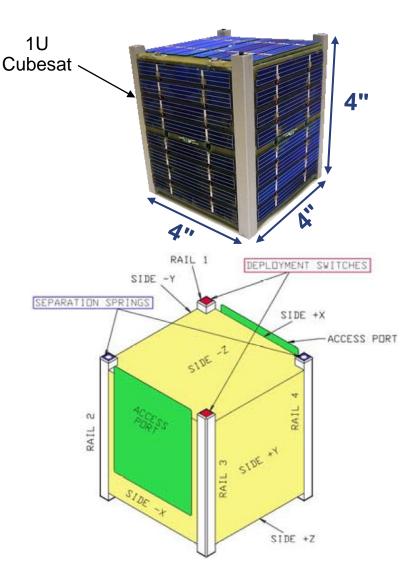
UPCOMING ULA RIDESHARE LAUNCHES								
NROL-55/GRACE	Atlas V 4012015Secondary13ABC							
InSight/MarCO	Atlas V 401	2016	Secondary	2	ABC			
JPSS-1/ELaNa	Delta II 7920	2016	Secondary	TBD (Up to 9U)	Delta II P-POD			
ICESat II/ELaNa	Delta II 7420	2017	Secondary	TBD (Up to 9U)	Delta II P-POD			

ULA is the most experienced US rideshare launch service provider

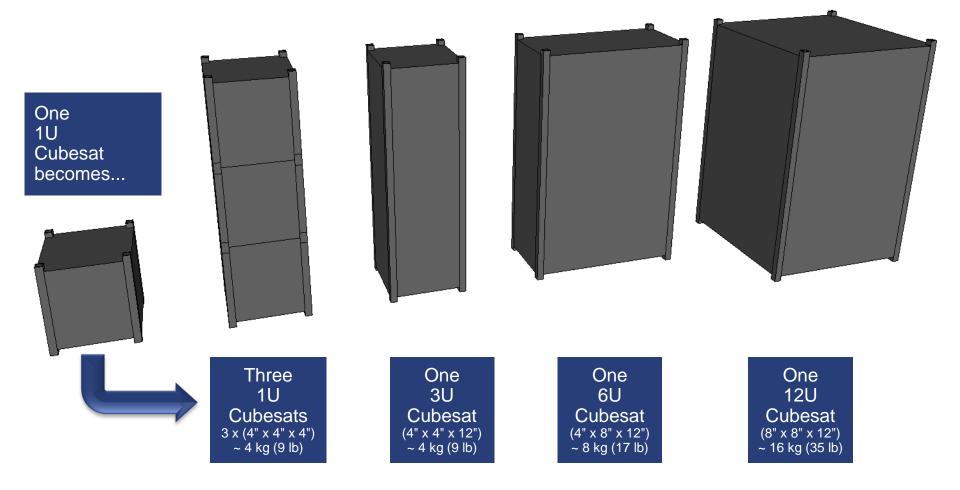
ULA Rideshare Capability Overview

America's Ride to Space

	CAPABILITY		LV DII DIV	AV	STATUS	INTERFACE	MAXIMUM # PER LAUNCH	MAXIMUM MASS PER PAYLOAD	VOLUME PER PAYLOAD
	Delta II Second-Stage Mini-Skirt		•		Operational	P-POD	3 P-PODs	1.33 kg (2.9 lb)	10 cm ³ (4 in ³)
	CAP (C-Adapter Platform)		•	•	First launch TBD	8-in Clampband	4 CAPs	45 kg (100 lb)	23 cm x 31 cm x 33 cm (9 in x 12 in x 13 in)
RIDESHARE	ABC (Aft Bulkhead Carrier)			•	Operational	15-in Bolted	1 ABC	80 kg (176 lb)	51 cm x 51 x 76 cm (20 in x 20 in x 30 in
RIDES	ESPA (EELV Secondary Payload Adapter) (Moog CSA Engineering)		•	•	Operational	15-in Bolted	Up to 6 S/C per ESPA	181 kg (400 lb)	61 cm x 71 cm x 96 cm (24 in x 28 in x 38 in
	AQUILA (Adaptive Launch Solutions)		•	•	CDR 4/2012	Variable	Up to 3 S/C per AQUILA	1,000 kg (2,200 lb)	142-cm dia. x 152 cm (56-in dia. x 60 in)
	XPC (External Payload Carrier) (Special Aerospace Services)			•	PDR 12/2010	Variable	1 XPC	1,810 kg (4,000 lb)	21.2 m ³ (750 ft ³)
	DSS-4 (Dual Spacecraft System, 4-m)	pacecraft System, 4-m)		CDR 62-in Bolted	62 in Poltod	d 1 DSS-4	2,270 kg (5,000 lb)	365-cm-dia. x 658 cm (144-in-dia. x 259 in) (3-plug)	
DUAL-MANIFEST			•		02-III Bolleu		₩ 9,000 kg (19,800 lb)	254-cm-dia. x 445 cm (100-in-dia. x 175 in) (3-plug)	
DUAL-M	DSS-5			CDR			5,440 kg (12,000 lb)	457-cm-dia. x 762 cm (180-in-dia. x 300 in)	
	(Dual Spacecraft System, 5-m)			•	12/2014	62-in Bolted	1 DSS-5	₽,000 kg (19,800 lb)	375-cm-dia. x 487 cm (148-in-dia. x 192 in)

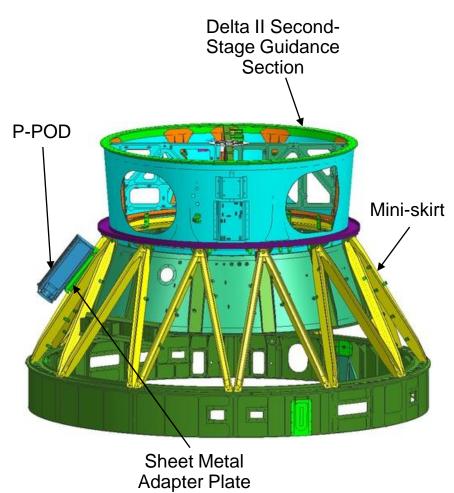

As of 2-2015

America's Ride to Space


	Cubesat Nano-Satellite
Description	A miniaturized satellite originally designed for use in conjunction with university educational projects
Interface	P-POD Dispenser
Mass	1.33 kg (2.9 lb) per 1U Cubesat
Volume	10 cm ³ (4 in ³) per 1U Cubesat
Status	Operational; nearly 100 Cubsats launched to date
Developer	Cal Poly San Luis Obispo & Stanford (Jordi Puig-Suari, jpuigsua @calpoly.edu)

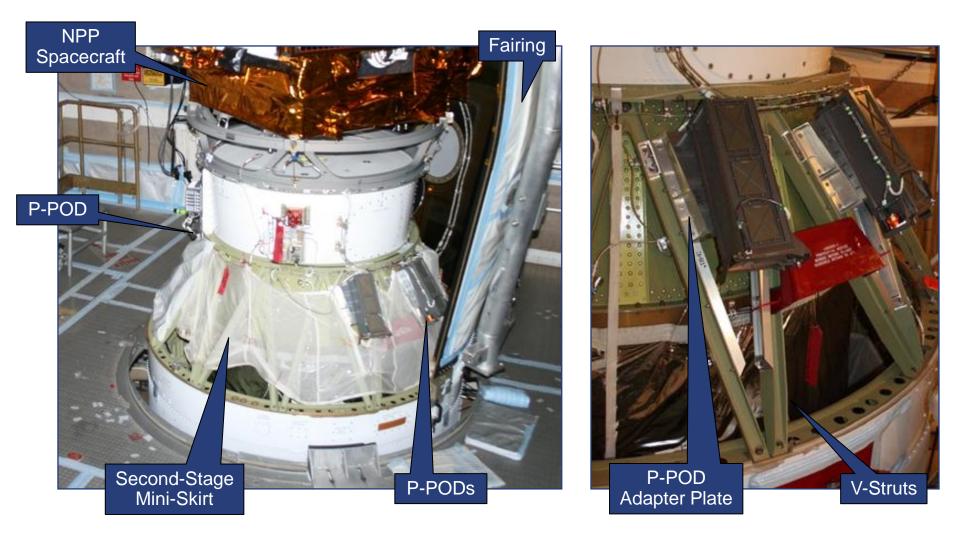
Cubesats have minimal impact to the LV: they have a long shelf-life, have no need for charging prior to launch, and are inactive during launch

1U Cubesat Volume Can Be Combined To Create Larger Cubesats



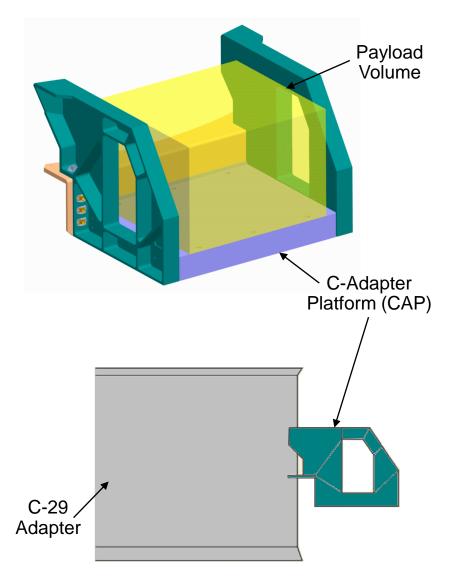
Delta II P-POD

America's Ride to Space


Delta II P-POD				
Description	A Cubesat P-POD dispenser attached to the Delta II second-stage mini-skirt			
Vehicle	Delta II			
Capacity	3 P-PODs (9 Cubesats)			
Interface	P-POD Dispenser			
Mass	1.33 kg (2.9 lb) per 1U Cubesat			
Volume	10 cm ³ (4 in ³) per 1U Cubesat			
Status	Operational; first launch 10-2011 on NASA NPP			

Three additional Delta II P-POD opportunities will be available through the NASA Educational Launch of Nanosatellites (ELaNa) program

America's Ride to Space

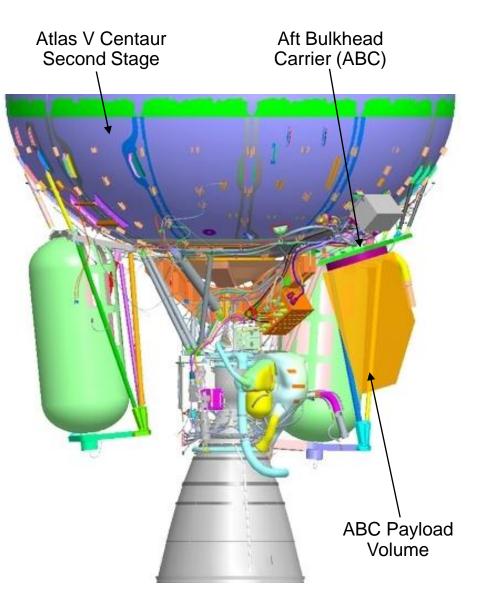


C-Adapter Platform (CAP)

America's Ride to Space

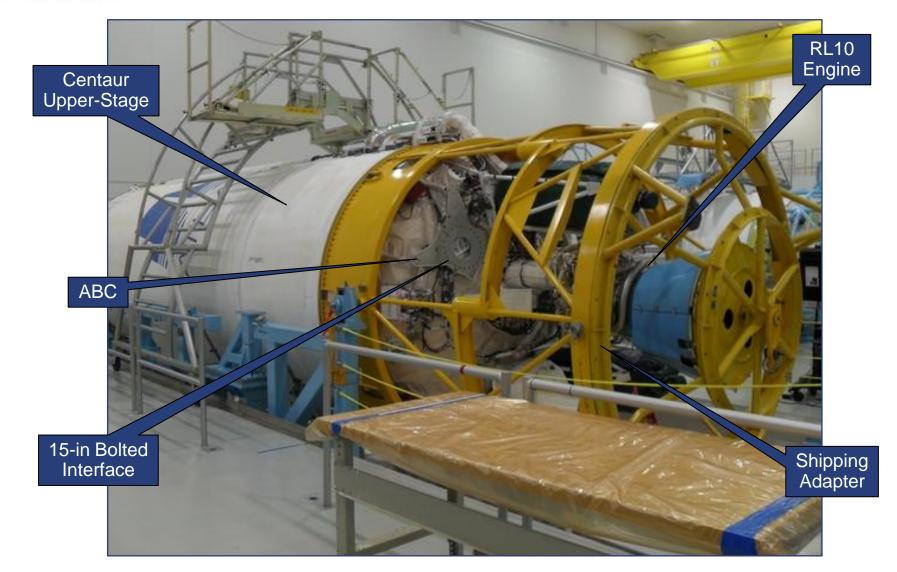
C-Adapter Platform (CAP)				
Description	A cantilevered platform attached to the side of a C-adapter to accommodate secondary payloads			
Vehicle	Atlas V, Delta IV			
Capacity	4 CAPs per C-adapter			
Interface	8-in Clampband			
Mass	45 kg (100 lb)			
Volume	23 cm x 31 cm x 33 cm (9 in x 12 in x 13 in)			
Status	Qualified for GSO battery			

The CAP was originally designed to accommodate batteries that are part of the Atlas V GSO extended-mission kit hardware



America's Ride to Space

Aft Bulkhead Carrier (ABC)					
Description	An interface located at the aft-end of the Atlas V Centaur second-stage				
Vehicle	Atlas V				
Capacity	1 ABC per Atlas V				
Interface	15-in Bolted Interface				
Mass	80 kg (176 lb)				
Volume	51 cm x 51 cm x 86 cm (20 in x 20 in x 34 in)				
Status	Operational; first launch 09-2012 on NROL-36 (OUTSat - NPSCuL box with 8 P-PODs)				


A second ABC mission, GEMSat, launched in Dec 2013, and two additional missions are currently on contract for launch by ULA



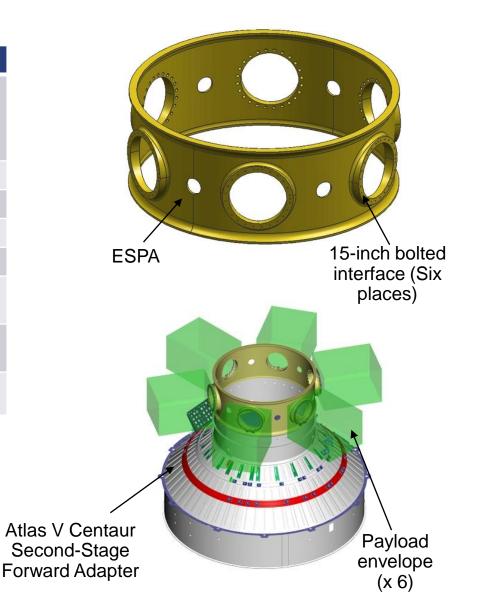
ABC Installed on Centaur

America's Ride to Space

ABC/NROL-36 - OUTSat & Naval Postgraduate School Cubesat Launcher (NPSCuL)

Photos courtesy of NRO/OSL

The Operationally Unique Technologies Satellite (OUTSat) launched 8 P-PODs via the Naval Postgraduate School Cubesat Launcher (NPSCuL)

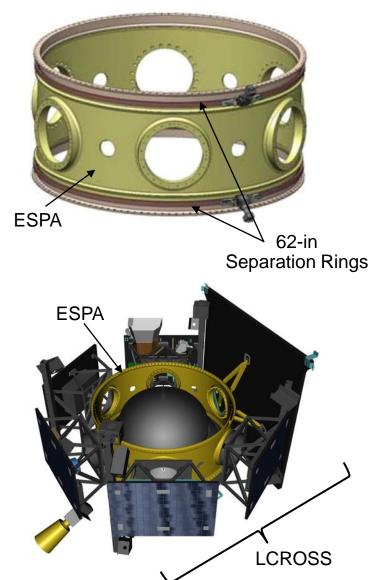


EELV Secondary Payload Adapter (ESPA)

America's Ride to Space

EELV S	EELV Secondary Payload Adapter (ESPA)			
Description	An adapter located between the second- stage and the primary payload, which can accommodate up to six secondary payloads			
Vehicle	Atlas V, Delta IV			
Capacity	6 payloads per ESPA			
Interface	15-in Bolted Interface			
Mass	181 kg (400 lb)			
Volume	61 cm x 71 cm x 96 cm (24 in x 28 in x 38 in)			
Status	Operational; first launch 03-2007 on STP-1			
Developer	Moog CSA Engineering (Joe Maly, jmaly@csaengineering.com)			

ESPA hardware will be used to launch ANGELS on AFSPC-4 in 2014, and additional missions are being evaluated



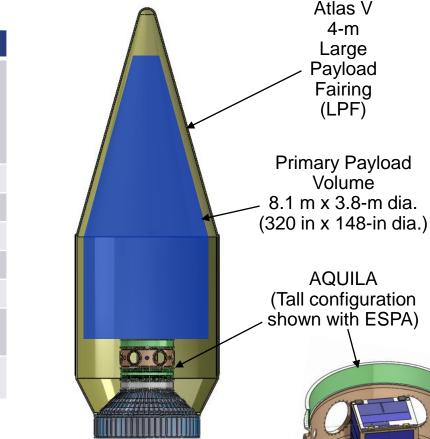
Separating ESPA

America's Ride to Space

Separating ESPA				
Description	A separating rideshare payload that uses the ESPA ring as the structural bus of the satellite			
Vehicle	Atlas V, Delta IV			
Capacity	Variable			
Interface	62-in Bolted Interface			
Mass	1,360 kg (3,000 lb)			
Volume	350-cm dia. x 61 cm (138-in dia. x 24 in)			
Status	Operational; first launch 06-2009 on LRO/LCROSS			
Developer	Moog CSA Engineering (Joe Maly, jmaly@csaengineering.com)			

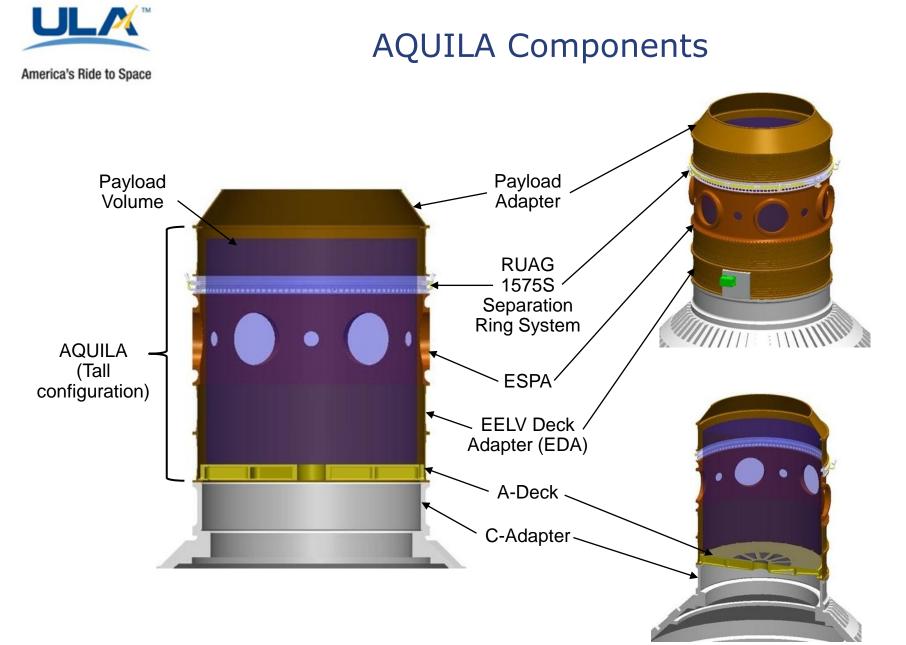
A separating ESPA can use various separation ring hardware solutions from a number of vendors to separate from the ULA launch vehicle

LRO/LCROSS Overview


- In 2009, an Atlas V 401 launched the NASA Lunar Reconnaissance Orbiter (LRO), with the Lunar CRater Observation and Sensing Satellite (LCROSS) as a secondary payload
 - LCROSS' mission was to determine the presence of ice water in a permanently shadowed crater on the Moon
- Designed around an ESPA, LCROSS stayed attached to the Centaur for 4 months, providing command and control to Lunar orbit
- Prior to Lunar impact, LCROSS separated from Centaur, allowing Centaur to act as a heavy impactor that created a debris plume for LCROSS to fly through
 - Centaur and LCROSS successfully impacted Moon on 10/9/2009

AQUILA Description A flat deck and cylindrical spacers, located between the forward-end of the second stage and the primary payload, providing volume for rideshare payloads inside the AQUILA system Vehicle Atlas V. Delta IV Capacity Multiple payloads per AQUILA Interface Mission-unique bolted Mass 1,000 kg (2,200 lb) Volume 142-cm dia. (56-in dia.) x 152 cm (60 in) Status In development; CDR 04-2012, Qualification tests complete **Developer** Adaptive Launch Solutions (ALS) (Jack Rubidoux, jrubidoux@adaptivelaunch.com)

AQUILA modular adapters are rated to support a primary payload mass up to 6,350 kg (14,000 lb)



A-Deck

AQUILA

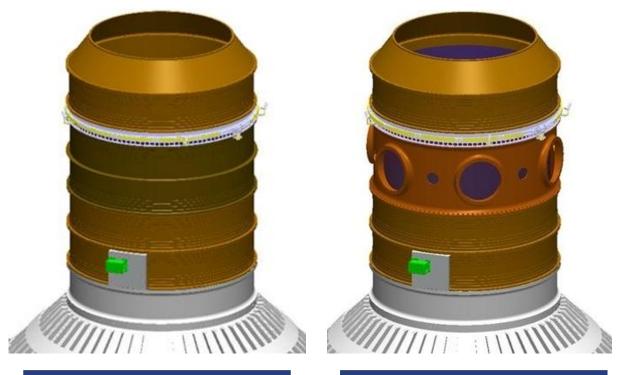
(--,--,

Images courtesy of ALS

Tall

142-cm dia. (56-in dia.) x

152 cm (60 in)

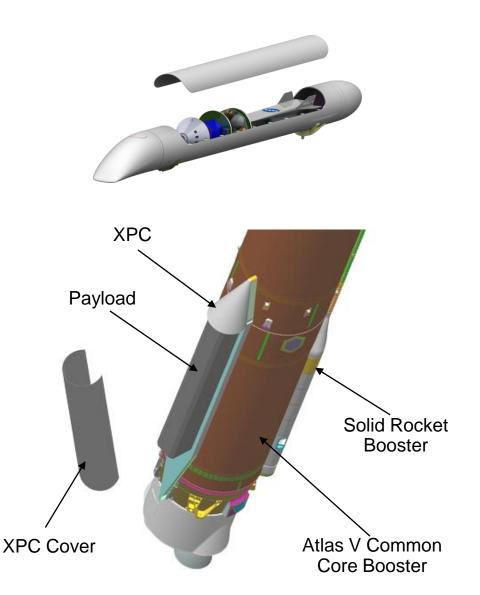

AQUILA can support multiple heights and is available with various options (i.e. ESPA, isolation barrier) to accommodate customer needs

Short

142-cm dia. (56-in dia.) x 58 cm (23 in)

Graphics courtesy of ALS

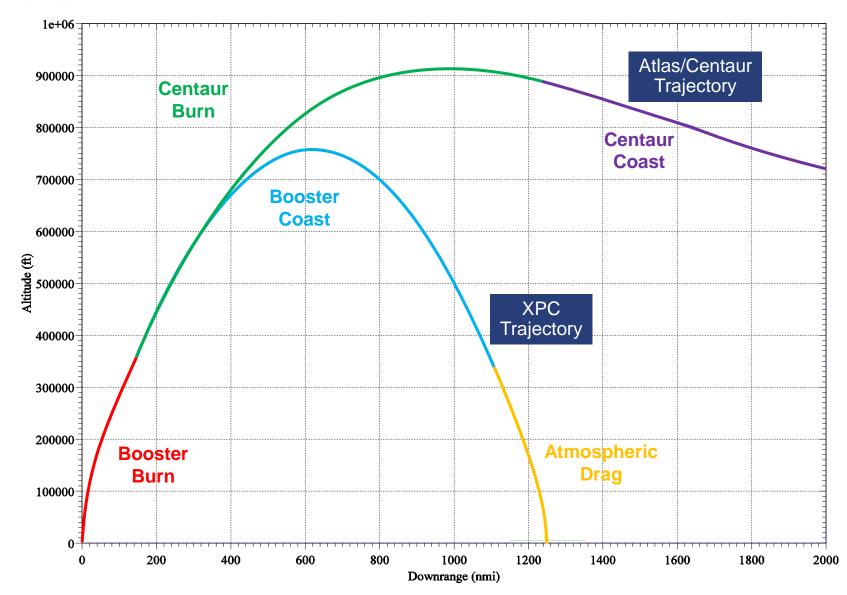
Tall with ESPA


142-cm dia. (56-in dia.) x 152 cm (60 in)

eXternal Payload Carrier (XPC)

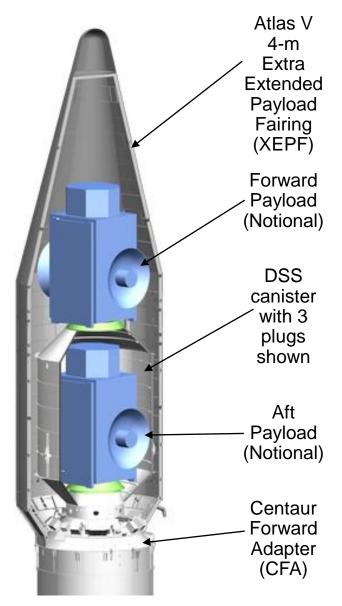
America's Ride to Space

	XPC
Description	An inert solid rocket booster to hold small payloads for injection into a hypersonic suborbital trajectory
Vehicle	Atlas V
Capacity	1 XPC per launch
Interface	Variable
Mass	1,810 kg (4,000 lb)
Volume	21.2 m ³ (750 ft ³)
Status	Concept Development
Developer	Special Aerospace Services (SAS) (Tim Bulk, tbulk@specialaerospaceservices.com)


The XPC can accommodate one large payload, or a number of smaller payloads, and all are jettisonable during the sub-orbital trajectory of the first-stage

XPC Notional Trajectory

America's Ride to Space



Dual Spacecraft System, 4-m (DSS-4)

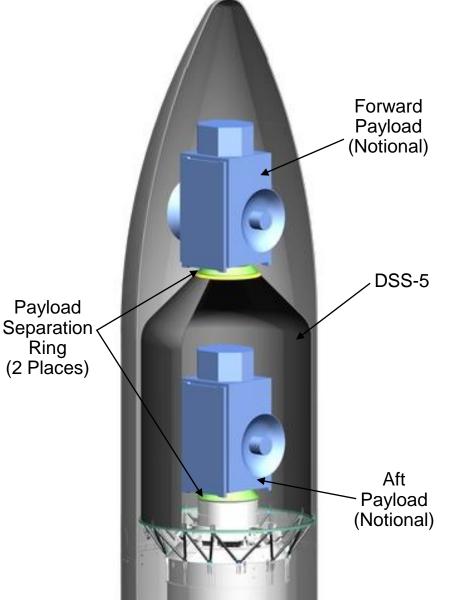
America's Ride to Space

	DSS-4				
Description	A modular dual-manifest launch capability for 4-m fairings, using Centaur Forward Assembly hardware				
Vehicle	Atlas V, Delta IV (4-m fairings)				
Capacity	1 DSS-4 per launch, 2 payloads				
Interface	62-in Bolted				
Mass	Upper Payload: 2,270 kg (5,000 lb) Lower Payload: 9,000 kg (19,800 lb)				
Volume	Upper Payload: 365-cm-dia. x 658 cm (144-in-dia. x 259 in) Lower Payload: 254-cm-dia. x 445 cm (100-in-dia. x 175 in)				
Status	CDR 12-2009				

The DSS-4 will have the same onorbit concept of operations as the Delta II DPAF, delivering the two payloads to the same or similar orbits (Performance-limited)

DSS-4 Plug Options & Volumes

	0 Plug	1 Plug	2 Plugs	3 Plugs	4 Plugs
Forward Payload	Delta II 10-ft PLF	Taurus 92 PLF	Delta II 10-ft PLF	Minotaur IV 92	Delta II 9.5-ft PLF
Aft Payload	Pegasus 38	Falcon 1	Falcon 1E	Taurus 63	Delta II 9.5-ft PLF


Dimensioned drawings are available in the current Atlas V & Delta IV Users Guides

America's Ride to Space

DSS-5						
Description	A dual-manifest launch capability for 5-m fairings, using newly designed composite structure					
Vehicle	Atlas V, Delta IV (5-m fairings)					
Capacity	1 DSS-5 per launch, 2 payloads					
Interface	62-in Bolted					
Mass	Forward Payload: 5,440 kg (12,000 lb) Aft Payload: 9,000 kg (19,800 lb)					
Volume	Forward Payload: 457-cm-dia. x 762 cm (180-in-dia. x 300 in) Aft Payload: 375-cm-dia. x 487 cm (148-in-dia. x 192 in) (Standard DSS-5)					
Status	In development; CDR 12-2014					

The DSS-5 is expected to be first used in support of the GPS III program, with a first-flight of a GPS III dual manifest mission in 2017/2018

Assessing Possible Rideshare Matches

- When determining if a rideshare match is possible, the following toplevel parameters need to be assessed:
 - Launch Date Are the primary and rideshare payloads launching at the same time?
 - Orbit Are the primary and rideshare payloads going to the same or similar orbits?
 - Mass Does the launch vehicle have enough mass margin to deliver all payloads to their respective orbits?
 - Volume Does the fairing volume provide enough room for all payloads?
 - Schedule Is there enough time to adequately integrate the mission?
 - Funding Does the rideshare payload have enough budget to support both early feasibility studies and mission integration work?
- Upon assessing these initial parameters, and assuming a positive result, feasibility work can begin, which will ensure complete compatibility between the rideshare and the primary payload
 - Pre-coordination with the primary payload customer may be required, depending on launch service contract requirements
- The standard mission integration process will begin 18-30 months before launch, depending on the primary payload schedule

Manifesting and Integrating Rideshare Payloads - Two Basic Approaches

- □ Adding Rideshare Payloads To Existing Missions
 - This is the historical approach for many past rideshares; however, it is more difficult to implement due to impacts to the primary payload mission
 - The launch vehicle configuration is already determined, so depending on the rideshare mass/volume, there could be impacts to the fairing size, number of solid rocket motors, and other physical parameters
 - The rideshare manifest request may come after many months of mission integration work on the primary payload has been completed, requiring some design and analysis to be performed again
- Designing Rideshare Missions Concurrently
 - This approach identifies and manifests the primary and rideshare payloads together early in the mission integration process
 - Payloads are designed and integrated concurrently
 - Maximizes mission capability and efficiencies between the rideshare payloads
 - Prevents the need for changing launch vehicle configurations or redoing mission analyses

ULA recommends concurrent rideshare mission design to ensure rideshare mission success

Adding Performance Margin Via Solid Rocket Motors

- ULA's Atlas V and Delta IV launch vehicles have multiple configurations based on the number of solid rocket motors (SRMs) flown
- For both current missions, or when designing a new rideshare mission, the addition of an SRM can provide an appreciable amount of mass capability to orbit, as shown below

		All values are in kg					
ORBIT	VEHICLE	0 SRMs	1 SRM	2 SRMs	3 SRMs	4 SRMs	5 SRMs
GTO (35,786 X 185 km @ 27.0 deg)	Atlas V 4-m	- 4,750	+ <i>1,200</i> 5,950	+ <i>940</i> 6,890	+ <i>810</i> 7,700		
	Atlas V 5-m	- 3,780	+ <i>1,470</i> 5,250	+ <i>1,230</i> 6,480	+ <mark>970</mark> 7,450	+ <i>840</i> 8,290	+ 610 8,900
	Delta IV 4-m	- 4,210		+ <i>1,950</i> 6,160			
	Delta IV 5-m			- 5,080		+ <i>1,810</i> 6,890	
LEO Polar (200 km circular @ 90 deg)	Atlas V 4-m	- 8,080	+ <i>1,900</i> 9,980	+ <i>1,160</i> 11,140	+ 990 12,130		
	Atlas V 5-m	- 6,770	+ 2,200 9,060	+ <i>2,100</i> 11,160	+ <i>1,720</i> 12,880	+ <i>1,600</i> 14,480	+ <i>1,280</i> 15,760
	Delta IV 4-m	- 7,690		+			
	Delta IV 5-m			- 9,610		+ <i>1,990</i> 11,600	

Summary

- Rideshare is a flight-proven solution to achieving various mission objectives
- Multiple ULA rideshare capabilities offer solutions to all mission types
 - -Mass range 1 kg to 5,000 kg
 - -Dimension range 10 cm to 5 m
- Designing and launching comanifested missions is the best approach for maximizing mission capability to orbit, at a significant cost savings over a dedicated launch

United Launch Alliance stands ready to evaluate concepts and provide low-cost rideshare launch opportunities to the spacecraft community

America's Ride to Space