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The Status Quo for In-Space Vehicles

� Independent power, attitude control, pressurization & vent systems

– Discrete hardware with redundancy where tolerable for reliability

• Separate storage for hydrazine, helium, hydrogen, oxygen

– Independent, additive mass margins for working fluids

– Individually optimized systems meet strictly bounded mission designs

• Short duration, highly predictable engine burn times, duration & number

– Minimal tolerance for hardware malfunction

• Design focus on making hardware perfect & elaborate testing to assure it• Design focus on making hardware perfect & elaborate testing to assure it

• Redundancy often compromises system function

– Complex, safety-compromised, built-on-the-vehicle designs

• Extensive installation labor, functional testing at top assembly

• Hazardous ultra high pressure gases, toxic propellants, pyrotechnics 

– Require extensive engineering oversight

• Tight margins demand elaborate mission analyses

• Direct operational experience with flight hardware limited to brief acceptance 
tests



Architecture Assessment

� Dry mass roughly 15-20% of total vehicle

– Scales directly with vehicle size, mission duration

� Brittle, point-designs with limited growth capability

� Much technology shared with no other industry 

– Hypergolic fluid loading, storage & delivery systems 

– Hypergolic thrusters

– Single use batteries

– Low-margin, high-capacity pressure vessels– Low-margin, high-capacity pressure vessels

� Small leakages, blockages or contamination potentially fatal

� Complex loading/activation processes 

� Limited preflight hardware validation

� Shortcomings overcome by intensive engagement of large, highly 
skilled teams working under a highly disciplined control system



Typical In-Space Vehicle Systems Architecture
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Technology Focus to Date

� Increase performance & reliability via:

– Higher pressure, higher fluid density lightweight composite tanks

– Simplified, no-friction valves, Improved assembly technologies

– Less toxic propellants, high performance Lithium batteries

� Bottom line: Only marginal improvements can be attained with existing 
design approaches

– Very high investment to realize these incremental improvements

– Not attractive from an economics standpoint– Not attractive from an economics standpoint

� Biggest problem: aerospace-only solutions are built by mostly 
aerospace-only companies

– High undiluted overheads, highly skilled engineering support systems

– Low-rate production with often exotic, quality critical processes

– Limited learning from real-world field experience

– Inevitable high-costs



The Goals

� Slash costs by designing in the best possible system reliability

– Get rid of GHe, Hydrazine, large Batteries & high pressures

– Simple, commercial designs and materials, no toxic/hazardous operations

– Extremely large functional margins, full block redundancy

� Amplify performance & mission capability

– Performance increases of 10-20% of vehicle dry mass

– Unlimited engine burns, low delta-V burns, built-in vehicle disposal

• Enable disposal without cost or performance penalty

– Eliminate restrictions to flight duration except by main vehicle propellants

� Support all likely future transport architectures

– Anticipate larger thruster sizes, greater power demand, larger tanks

– Enable depot based space transport 

• Vehicle replenishment, fluid transfer, thermal management

– Support booster and upper stage re-use

• Long system life, no-touch between flights, highest possible reliability



IVF Basic Concept

� Use only hydrogen and oxygen already on board for vehicle functions

– Pressurization & Vent

– Attitude control & Vehicle settling

– Power

� Use waste gas whenever possible

– H2 & O2 that would have been vented overboard on today’s vehicle

� Use a small H2/O2 burning engine to provide power for all vehicle 
functionsfunctions

– Electrical power

– Pump H2 & O2 up to moderate pressure as needed

• Minimal storage capacity hence small residuals, low costs, low mass

� Block-redundant hardware to maximize margins and fault tolerance

� Eliminate risks from high pressures, leakage, material incompatibility, 
contamination, corrosion, short-life wearout

� Use hardware validated by non-aerospace industry experience 

� Leverage companies with non-aerospace experience with critical 
hardware



The IVF Transformation

Existing Centaur with Additional 
Hydrazine Storage for Disposal 

Operations

Centaur Converted to IVF
Approximate Liftoff Mass Benefit: 0.5t



IVF Block Schematic
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Thruster Hardware

Saturn S-IVB Ullage Burning 
Settling Motor

H2/O2 Axial Thruster 
Atmospheric Hotfire Testing



ICE/ ISG Hardware

1965 Vickers H2/O2 
Single Cylinder Engine 

2010 Single Cylinder Engine on 
Dynamometer Test Stand

Wankel H2/O2 Engine Ready 
for Thermal Survey Testing Single Cylinder Engine Dynamometer Test Stand for Thermal Survey Testing 

Back to Back Starter/Generators 
Ready to Test

Integrated Engine/Starter-
Generator Load Simulation Testing



Gen1 IC Engine- Outboard View
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Integrated Starter-
Generator

Coolant Inlet Ports (6)

Gen 1 IC Engine- Inboard Side 

High Speed Power Take-Off Shaft 
(Dynamometer Interface)

Central Gearbox

Low Speed Power Take 
Off 

Crankcase Lubrication 
Inlet Port (6)



Hardware Fabrication
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Cryopumps

Two-stage Generation 1 Design
• Leverages all prior learning
• Optimized for accelerated learning and experimentation
• Rapid hardware changeout
• Completely controllable piston motion via linear motor



IVF Foundational Ideas

� Optimize overall vehicle design- not individual systems

� Store energy in one place- the main vehicle tanks

– Lowest mass of hardware per energy unit

– Minor energy storage in small rechargeable battery 

– Produce power, thrust, gases at need via simple machines

� Most energy is handled not as electricity but as heat

– Moving/using heat efficiently more important than conversion efficiency

Most mass savings come from reducing residuals/losses� Most mass savings come from reducing residuals/losses

– Settling the vehicle is mandatory to suppress propellant losses

– Controlling/reducing tank pressures starts a beneficial loop of reduced 
tank mass, propellant heating and propellant losses

– System mass does not have to scale with vehicle size & mission 
complexity

� Elevated voltage power is a powerful tool

– Lighter hardware, new device types, commonality to real-world 
hardware

� Batteries & engines sharing electrical loads benefits both their 
designs

– Reduced mass, simplified controls, high peak capacity



Summary

� IVF shows a path forward to new levels of cost, reliability & 
capability

– 3-Burn Centaur Flight benefits exceed 10% of dry mass

� Benefits existing vehicles but is a powerful design tool for next 
generation vehicles & especially crewed vehicles

– Long operational flight duration, compact, light & modular

– Extremely high peak power output dovetails with cruise solar power 

– Components valuable for depots, active cooling systems, in-situ – Components valuable for depots, active cooling systems, in-situ 
propellant synthesis

– Removable, simple and repairable in-situ with common tools

– Components made of common materials, everyday processes

– Works with methane & other propellants


