ATLAS V GPS IIF-7 MISSION

A United Launch Alliance Atlas V 401 vehicle will deliver the GPS IIF-7 satellite to semi-synchronous circular orbit. Liftoff will occur from Space Launch Complex 41 at Cape Canaveral Air Force Station, FL.

The Navstar GPS is a constellation of satellites that provides navigation data to military and civilian users worldwide. The system is operated and controlled by the 50th Space Wing, located at Schriever Air Force Base, CO.

GPS utilizes 24 satellites, in six different planes, with a minimum of four satellites per plane, positioned in orbit approximately 11,000 miles above the Earth’s surface. The satellites continuously transmit digital radio signals pertaining to the exact time (using atomic clocks) and exact location of the satellites. The GPS IIF series have a design life of 12 years. With the proper equipment, users can receive these signals to calculate time, location, and velocity. The signals are so accurate that time can be measured to within a millionth of a second, velocity within a fraction of a mile per hour, and location to within feet. Receivers have been developed for use in aircraft, ships, land vehicles, and to hand carry.

As a result of increased civil and commercial use as well as experience in military operations, the USAF has added the following capabilities and technologies to the GPS IIF series to sustain the space and control segments while improving mission performance:

- Two times greater predicted signal accuracy than heritage satellites.
- New L5 signals for more robust civil and commercial aviation.
- An on-orbit, reprogrammable processor, receiving software uploads for improved system operation.
- Military signal “M-code” and variable power for better resistance to jamming hostile environments, meeting the needs of emerging doctrines of navigation warfare.

Payload Fairing (PLF)
The spacecraft is encapsulated in the 4-m (14-ft) diameter large payload fairing (LPF). The LPF is a bisector (two-piece shell) fairing consisting of aluminum skin/stringer construction with vertical split-line longerons. The vehicle’s height with the PLF is approximately 189 ft.

Centaur
The Centaur second stage is 10 ft in diameter and 41.5 ft in length. Its propellant tanks are constructed of pressure-stabilized, corrosion resistant stainless steel. Centaur is a liquid hydrogen/liquid oxygen- (cryogenic-) fueled vehicle. It uses a single RL10A-4-2 engine producing 22,300 lb of thrust. The cryogenic tanks are insulated with a combination of helium-purged insulation blankets, radiation shields, and spray-on foam insulation (SOFI). The Centaur forward adapter (CFA) provides the structural mountings for the fault-tolerant avionics system and the structural and electrical interfaces with the spacecraft.

Booster
The Atlas V booster is 12.5 ft in diameter and 106.5 ft in length. The booster’s tanks are structurally rigid and constructed of isogrid aluminum barrels, spun-formed aluminum domes, and intertank skirts. Atlas booster propulsion is provided by the RD-180 engine system (a single engine with two thrust chambers). The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen, and delivers 800,200 lb of thrust at sea level. The Atlas V booster is controlled by the Centaur avionics system, which provides guidance, flight control, and vehicle sequencing functions during the booster and Centaur phases of flight.
ATLAS V PRODUCTION AND LAUNCH

1. Denver, CO
 - ULA Headquarters & Design Center Engineering
2. Harlingen, TX
 - Payload Fairing, Payload Fairing Adapter, Booster Adapter & Centaur Adapter Fabrication
3. Decatur, AL
 - Booster Fabrication & Final Assembly, Centaur Tank Fabrication & Centaur Final Assembly
4. West Palm Beach, FL
 - RL10 Engine Fabrication at Aerojet Rocketdyne West Palm Beach, FL
5. Khimki, Russia
 - RD-180 Engine Fabrication at NPO Energomash

Spacecraft Processing, | Spaceship processing, testing and encapsulation
Vertical Integration Facility | Launch vehicle Integration and testing, spacecraft mate and integrated operations

Mission Profile and Ground Trace

1. RD-180 Engine Ignition
 Time (seconds): -2.7 Time (hr:min:sec): -00:00:02.7
2. Lift Off (Thrust to Weight > 1)
 Time (seconds): 1.1 Time (hr:min:sec): -00:00:01.1
3. Begin Pitch/Yaw Maneuver
 Time (seconds): 17.2 Time (hr:min:sec): 00:00:17.2
4. Mach 1
 Time (seconds): 78.2 Time (hr:min:sec): 00:01:18.2
5. Maximum Dynamic Pressure
 Time (seconds): 90.3 Time (hr:min:sec): 00:01:30.3
6. Atlas Booster Engine Cutoff (BECO)
 Time (seconds): 243.6 Time (hr:min:sec): 00:04:03.6
7. Atlas Booster/Centaur Separation
 Time (seconds): 249.6 Time (hr:min:sec): 00:04:09.6
8. Centaur Main Engine Start (MES-1)
 Time (seconds): 259.6 Time (hr:min:sec): 00:04:19.6
9. Payload Fairing Jettison
 Time (seconds): 267.6 Time (hr:min:sec): 00:04:27.6
10. Centaur First Main Engine Cutoff (MECO-1)
 Time (seconds): 1,028.8 Time (hr:min:sec): 00:17:08.8
11. Centaur Second Main Engine Start (MES-2)
 Time (seconds): 11,828.2 Time (hr:min:sec): 03:17:47.2
12. Centaur Second Main Engine Cutoff (MECO-2)
 Time (seconds): 11,956.6 Time (hr:min:sec): 03:19:16.6
13. GPS IF-7 Separation
 Time (seconds): 12,243.2 Time (hr:min:sec): 03:24:02.3

All Values Approximate