COSMO-SkyMed
COSMO-2

Delta Launch Vehicle Programs
Boeing Launch Services and United Launch Alliance are honored to launch COSMO-2, the second satellite of the COSMO-SkyMed (Constellation of Small Satellites for Mediterranean basin Observation) constellation. COSMO-2 will be launched aboard a Delta II launch vehicle from Vandenberg Air Force Base (VAFB). The launch vehicle will deliver COSMO-2 into a circular sun-synchronous orbit, phased on the same orbital plane as COSMO-1, where COSMO-2 will begin its mission of data observation and data recording for the needs of both the military and civil community.

United Launch Alliance provides the Delta II launch vehicle and mission services under a commercial launch service contract administered by Boeing Launch Services for Thales Alenia Space, Italia (TAS-I). COSMO-1, the first COSMO-SkyMed satellite, was launched by the Delta II in June 2007. Our congratulations to the entire Delta team for their significant efforts that resulted in achieving this milestone.

Kenneth A. Heinly
Vice-President, Boeing Launch Services
The Boeing Company

Kristen T. Walsh
Director, NASA/Commercial Programs
United Launch Alliance
COSMO-SkyMed System Overview

COSMO-SkyMed, the new system for Earth observation, entirely developed and produced in Italy, is based on a constellation of four radar satellites. Each satellite is equipped with a high-resolution Synthetic Aperture Radar (SAR) operating in X-band and flexible and innovative transmission equipment for high speed downlink of acquired data to the receiving ground stations.

The system ground segment consists of infrastructures devoted to the management of the constellation (Mission Planning and Control Centre and Satellite Control Center); services for the management and planning of user requests; and services for the gathering, processing, archiving, and distribution of data to the users.
Mission Objectives

The overall objective of the COSMO-SkyMed program is global Earth observation and the Mediterranean area in particular. Specific applications include:

- Territorial surveillance and prevention of natural disasters
- Coastal surveillance to assess coastal erosion and sea/river pollution
- Control of farming, forestry resources, and urban buildings
- Mapping using images with a resolution in the order of 1 m
- Territorial security and strategic defense
Delta II 7420-10 Launch Vehicle
Mission Requirements

- DTO Spacecraft Mass (kg/lb) 1900 / 4189
- Launch Window 18:31 – 19:34 PST (02:31:39 UTC, next day)

- Orbit Requirements*
 - Semi-Major Axis (km/nmi) 7006.742 / 3783.338
 - Eccentricity 0.00127
 - Apogee Altitude (km/nmi) 637.5 / 344.2
 - Perigee Altitude (km/nmi) 619.7 / 334.6
 - Inclination (deg)** 97.8598
 - Argument of Perigee (deg)** 68.5

- Free Molecular Heating Rate (FMHR) <0.1 BTU/ft²-sec (1135 W/m²) at fairing jettison

- Post-Separation Deposition of Contaminants onto Spacecraft <10 Angstroms

*(Defined at First Ascending Node Crossing)
**(True-of-Date Coordinate System)
Flight Mode Description – Boost-to-Orbit

- 7420-10 launch from Vandenberg Air Force Base (VAFB) SLC-2W
- Flight azimuth of 196 deg
- Four GEM solid motors ignited at liftoff
- GEM solid motors burnout at 1 min, 4.0 sec, and are jettisoned at 1 min, 22.5 sec to assure clearance of coastal oil platforms
- Dog-leg maneuver performed from 1 min, 25 sec to 2 min, 0 sec to attain required orbital inclination
- Main Engine Cutoff (MECO) occurs at 4 min, 24.0 sec after liftoff when first-stage propellants are depleted
- Stage I-II separation occurs 8 sec after MECO
- Stage II ignition occurs 5.5 sec after Stage I-II separation
- Payload fairing jettisoned when free molecular heating rate <0.1 BTU/ft²·sec (1135 W/m²)
- Command Receiver Decoders (CRDs) turned off at 7 min, 17.5 sec
- Stage II first burn cutoff (SECO-1) occurs at 11 min, 25.1 sec
 - Vehicle inserted into a 185 x 645 km (100 x 348 nmi) orbit with an inclination of 97.80 deg
- Telemetry coverage provided by WR sites until approximately 7 min, 10 sec and then by Instrumented Aircraft (IA) through SECO-1
Sequence of Events – Boost-to-Orbit

<table>
<thead>
<tr>
<th>Event</th>
<th>Time (hr:min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liftoff</td>
<td>0:00:00.0</td>
</tr>
<tr>
<td>Mach 1</td>
<td>0:00:30.5</td>
</tr>
<tr>
<td>Maximum Dynamic Pressure</td>
<td>0:00:45.4</td>
</tr>
<tr>
<td>4 Solid Motors Burnout</td>
<td>0:01:04.0</td>
</tr>
<tr>
<td>4 Solid Motors Jettison</td>
<td>0:01:22.5</td>
</tr>
<tr>
<td>Begin Dog-Leg Maneuver</td>
<td>0:01:25.0</td>
</tr>
<tr>
<td>End Dog-Leg Maneuver</td>
<td>0:02:00.0</td>
</tr>
<tr>
<td>Main Engine Cutoff (MECO)</td>
<td>0:04:24.0</td>
</tr>
<tr>
<td>Stage I/II Separation</td>
<td>0:04:32.0</td>
</tr>
<tr>
<td>Stage II Ignition</td>
<td>0:04:37.5</td>
</tr>
<tr>
<td>Jettison Fairing</td>
<td>0:04:41.5</td>
</tr>
<tr>
<td>CRD Turnoff</td>
<td>0:07:17.5</td>
</tr>
<tr>
<td>First Cutoff – Second Stage (SECO-1)</td>
<td>0:11:25.1</td>
</tr>
</tbody>
</table>
Flight Mode Description – Coast and Restart

• Following SECO-1, vehicle reoriented to restart burn attitude
• At end of reorientation maneuver, thermal roll maneuver of 1 deg/sec initiated at 19 min, 20 sec and terminated at 51 min, 25 sec
• Second-stage restart occurs at 53 min, 27.0 sec over the Hartebeesthoek, South Africa tracking station
 – Restart burn duration of 12.4 sec
 – At end of restart burn (SECO-2) vehicle in 619.8 x 631.5 km (334.7 x 341.0 nmi) orbit with an inclination of 97.86 deg
• Following SECO-2, vehicle reoriented to spacecraft separation attitude
• Spacecraft separation occurs at 58 min, 0 sec over the Hartebeesthoek tracking station
 – COSMO-SkyMed uses a 4717 payload attach fitting (PAF) with a secondary latch system
 – PAF clampband released at 57 min, 30 sec and secondary latches are released at 58 min, 0 sec separating the spacecraft
Sequence of Events – Coast and Restart

<table>
<thead>
<tr>
<th>Event</th>
<th>Time (hr:min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin Thermal Conditioning Roll</td>
<td>0:19:20.0</td>
</tr>
<tr>
<td>End Thermal Conditioning Roll</td>
<td>0:51:25.0</td>
</tr>
<tr>
<td>Restart Second Stage</td>
<td>0:53:27.0</td>
</tr>
<tr>
<td>Second Cutoff – Second Stage (SECO-2)</td>
<td>0:53:39.4</td>
</tr>
<tr>
<td>Begin Maneuver to Separation Attitude</td>
<td>0:54:00.0</td>
</tr>
<tr>
<td>End Maneuver to Separation Attitude</td>
<td>0:57:20.0</td>
</tr>
<tr>
<td>Release Clampband</td>
<td>0:57:30.0</td>
</tr>
<tr>
<td>Spacecraft Separation (release latches)</td>
<td>0:58:00.0</td>
</tr>
<tr>
<td>Spacecraft First Ascending Node Crossing</td>
<td>1:00:01.5</td>
</tr>
</tbody>
</table>
Flight Mode Description – Post Separation

• Following spacecraft separation, second-stage retro initiated to move stage away from the spacecraft
• After second-stage retro, vehicle is reoriented to the attitude for the second-stage evasive burn, which will move the second stage farther away from the spacecraft
• Ignition of 5-sec evasive burn occurs at 1 hr, 16 min, 40 sec over the Oakhanger, England tracking station
 – Burn inserts stage into a 185 x 616 km (100 x 332 nmi) orbit with an inclination of 97.87 deg
 – Worst case spacecraft contamination level from evasive burn meets requirement of <10 Angstroms
• Following the second-stage evasive burn, vehicle is reoriented to the attitude for the second-stage propellant depletion burn, which will safe the stage and also remove the stage from the spacecraft orbit plane
• Stage II depletion burn occurs at 1 hr, 26 min, 40 sec over the Thule, Greenland tracking station
 – Orbit at end of nominal depletion burn is 185 x 605 km (100 x 327 nmi) orbit with an inclination of 98.33 deg
Sequence of Events – Post-Separation

<table>
<thead>
<tr>
<th>Event</th>
<th>Time (hr:min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin Retro Maneuver</td>
<td>0:58:00.5</td>
</tr>
<tr>
<td>End Retro Maneuver</td>
<td>0:58:42.0</td>
</tr>
<tr>
<td>Begin Maneuver to Evasive Burn Attitude</td>
<td>1:00:10.0</td>
</tr>
<tr>
<td>End Maneuver to Evasive Burn Attitude</td>
<td>1:14:20.0</td>
</tr>
<tr>
<td>Restart Second Stage – Evasive Burn</td>
<td>1:16:40.0</td>
</tr>
<tr>
<td>Third Cutoff – Second Stage (SECO-3)</td>
<td>1:16:45.0</td>
</tr>
<tr>
<td>Begin Maneuver To Depletion Burn Attitude</td>
<td>1:17:05.0</td>
</tr>
<tr>
<td>End Maneuver To Depletion Burn Attitude</td>
<td>1:24:35.0</td>
</tr>
<tr>
<td>Restart Second Stage – Depletion Burn</td>
<td>1:26:40.0</td>
</tr>
<tr>
<td>Second Stage Depletion Initiation</td>
<td>1:26:51.1</td>
</tr>
<tr>
<td>Depletion Cutoff – Second Stage (SECO-4)</td>
<td>1:27:08.0</td>
</tr>
</tbody>
</table>
Flight Profile

Flight Profile

- **Liftoff – 1.33 g’s**
- **GEM Impact**
- **Fairing Jettison**
 - $t = 4\text{ min, 41.5 sec}$
 - $\text{Alt} = 125.4\text{ km (67.7 nmi)}$
 - $\text{Vel} = 4.99\text{ kps (16,367 fps)}$
- **Second-Stage Ignition**
 - $t = 4\text{ min, 37.5 sec}$
 - $\text{Alt} = 122.4\text{ km (66.1 nmi)}$
 - $\text{Vel} = 4.98\text{ kps (16,338 fps)}$
- **MECO**
 - $t = 4\text{ min, 24.0 sec}$
 - $\text{Alt} = 111.9\text{ km (60.4 nmi)}$
 - $\text{Vel} = 4.99\text{ kps (16,358 fps)}$
- **Second-Stage Restart**
 - $t = 53\text{ min, 27.0 sec}$
 - $\text{Alt} = 185.3\text{ km (100.3 nmi)}$
 - $\text{Vel} = 7.92\text{ kps (25,997 fps)}$
- **GEM Impact**
 - $t = 4\text{ min, 41.5 sec}$
 - $\text{Alt} = 125.4\text{ km (67.7 nmi)}$
 - $\text{Vel} = 4.99\text{ kps (16,367 fps)}$
- **Spacecraft Separation**
 - $t = 58\text{ min, 0.0 sec}$
 - $\text{Alt} = 626.7\text{ km (338.4 nmi)}$
 - $\text{Vel} = 7.54\text{ kps (24,753 fps)}$
- **SECO-1**
 - $t = 11\text{ min, 25.1 sec}$
 - $\text{Alt} = 185.7\text{ km (100.3 nmi)}$
 - $\text{Vel} = 7.92\text{ kps (25,997 fps)}$
- **Orbit**
 - Perigee Alt* = 185.2 km (100.0 nmi)
 - Apogee Alt* = 645.2 km (348.4 nmi)
 - Inclination = 97.803 deg
- **Orbit (at SECO-2)**
 - Perigee Alt* = 619.8 km (334.7 nmi)
 - Apogee Alt* = 631.5 km (341.0 nmi)
 - Inclination = 97.861 deg
- **Orbit (at Ascending Node)**
 - Semi-Major Axis = 7006.741 km
 - Eccentricity = 0.00127
 - Inclination = 97.8598 deg
 - Argument of Perigee = 68.5 deg

* Based on Earth radius of 6378.14 km (3443.92 nmi)
Orbit Trace – Boost-to-Orbit

Legend (time, sec)
1 – Main Engine Cutoff (264.0)
2 – SECO-1 (685.1)

WR Tracking Sites
VTS – AFSCN Vandenberg
TRS – WR Telemetry Receiving Station
SNI – NAWC San Nicolas Island

NP-3D
P-3 – NAWC Instrumented Aircraft
Orbit Trace – Coast and Restart

Legend (time, sec)
3 – First Restart (3207.0)
4 – SECO-2 (3219.4)
5 – Spacecraft Separation (3480.0)
6 – Second-Stage Restart (4600.0)
7 – SECO-3 (4605.0)

Downrange Tracking Site(s)
HBK – Satellite Applications Center
Hartebeesthoek, South Africa
TCS – AFSCN Oakhanger, England
Orbit Trace – Post-Separation

Legend (time, sec)
6 – Second Restart (4600.0)
7 – SECO-3 (4605.0)
8 – Third Restart (5200.0)
9 – SECO-4 (5228.0)

Downrange Tracking Site(s)
TCS – AFSCN Oakhanger, England
TTS – AFSCN Thule, Greeland
Delta Countdown

T-0 Day

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Heated RP-1 Re-Circulate A/R</td>
</tr>
<tr>
<td>0200</td>
<td>Weather Briefing for MST Removal</td>
</tr>
<tr>
<td>0400</td>
<td>V1T1 Briefing</td>
</tr>
<tr>
<td>0600</td>
<td>Final S/C Access Prior to Launch</td>
</tr>
<tr>
<td>0800</td>
<td>V1T1 Engineering Walkdown</td>
</tr>
<tr>
<td>1000</td>
<td>Camera Setup (Photo Squadron)</td>
</tr>
<tr>
<td>1200</td>
<td>V1T1 MST Move Preps</td>
</tr>
<tr>
<td>1400</td>
<td>Air Cond Setups</td>
</tr>
<tr>
<td>1600</td>
<td>Fairing and Whiteroom Preps</td>
</tr>
<tr>
<td>1800</td>
<td>V1T1 Early RP-1 Load (Option)</td>
</tr>
<tr>
<td>2000</td>
<td>Lanyard Tensioning</td>
</tr>
<tr>
<td>2200</td>
<td>Prep SM TLX Conn & ISDS Pin Pull</td>
</tr>
<tr>
<td>2400</td>
<td>MST Removal & Securing</td>
</tr>
</tbody>
</table>

Support

- OD Test 80
- OD Test 37
- 416.5, 2241.5, 5690.0, 5765.0 MHZ

Legend

- Range OP
- S/C OP
- Haz OP
- Pad Closed
- Essential Personnel
- Delta Task
- Pad Closed
- Meeting

SLC-2W Area Conditions

- OD Test 80
- OD Test 37

Final S/C Access Prior to Launch
COSMO-2 Terminal Count

T-0 Day

Launch Window
Open 02:31:39 02:31:40
Close

Note: Some Time Indications are Abbreviated, i.e., T-100 is 00:21:39

Vehicle Engine Slews
Top Off He & N₂
Pressurize Fuel Tank
RF Link Checks
Status Checks
S/C Switch to Internal (T-15 min)
Vehicle Transfer Internal
Vehicle Arm

Launch 18:31:39 18:31:40

Instantaneous Launch Window
Delta II Hardware Flow at VAFB

Vehicle Processing
- Erect and mate
 - First stage
 - Interstage
 - Solid motors
 - Second stage
- Erect and store fairing
- Align solid motors
- Vehicle checkout
- Interface checkout
- Simulated flight test
- Countdown preparation

SV Mate and Integrated Testing
- Mate SV assembly
- Flight program verification
- Ordnance installations
- Mate fairing
- Second-stage propellant loading
- RIFCA, beacon, and RS checks

Terminal Countdown and Launch

SV Processing Facility
- SV receiving inspection
- SV checkout activities
- Mate SV to PAF
- Encapsulate SV assembly

Hazardous Processing Facility (HPF)
- First-Stage Processing
 - Receiving inspection
 - Destruct installation
 - Transport to SLC-2
- Second-Stage Processing
 - Receiving inspection
 - Nozzle installation
 - Destruct installation
 - Transport to SLC-2

Building 836 South VAFB
- Offload stages
- Receiving inspection/storage
- Transport first stage and second stage to HPF
- Transport interstage to SLC-2
- Offload fairing, install LEA, and transport to SLC-2

Solid Motor Building 1670
- Receive and inspect
- Leak-check motor
- Inspect grain
- Solid motor build up
- Install nose cone
- Transport to SLC-2

Solid Motors
- Transport first stage from Decatur
- Transport second stage from CCAFS
- Transport interstage from Decatur
- Transport fairing from Decatur
- Transport SV assembly to SLC-2

Solid Motor Building 1670
- Solid motors from Alliant

Hazardous Processing Facility (HPF)
- Offload stages
- Receiving inspection/storage
- Transport first stage and second stage to HPF
- Transport interstage to SLC-2
- Offload fairing, install LEA, and transport to SLC-2

Building 836 South VAFB
- Receiving inspection
- Destruct installation
- Transport to SLC-2

Second-Stage Processing
- Receiving inspection
- Nozzle installation
- Destruct installation
- Transport to SLC-2

SV Processing Facility
- Space vehicle (SV)
- Interstage from Decatur
- Second stage from CCAFS
- Fairing from Decatur
- Transport SV assembly to SLC-2

Vehicle Processing Facility
- Receiving inspection
- Destruct installation
- Transport to SLC-2

Space Vehicle (SV)
- Transport SV assembly to SLC-2
Delta II Operational Flow at Western Range